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Abstract

This report defines a dimensionless shape factor, which is useful for characterizing the
penetration potential of projectiles and irregular shaped fragments. The shape factor, so
defined, is purely a function of shape and orientation and is independent of mass and material
density. The shape factor of some simple shapes is calculated exactly, but the focus of this
report is on a right circular cylinder (RCC). Not only is it possible to express the shape
factor as a function of the length-to-diameter (L/D) ratio and orientation, but it is also
possible to derive an exact, closed-form expression for the shape factor probability
distribution. It is found that the probability density function is not a symmetrical distribution
about its mode, but rather is highly skewed. This points out the inadequacy of an average
shape factor and also carries implications for designing fragment simulating projectiles
(FSPs). Furthermore, it is shown that randomly oriented cylinders have potential for

simulating behind-armor debris fragments.
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1. INTRODUCTION

This report defines a dimensionless shape factor, which is useful for characterizing the penetration potential
of projectiles and irregular shaped fragments. The shape factor, so defined, is purely a function of shape and orienta-
tion and is independent of mass and material density. This is a departure from the past where the previous definition
incorporated the material density—so that the shape factor for a steel fragment was different from an aluminum
fragment, even when they had the same size and shape. Indeed, this fact is easy to overlook with the past definition,
and so one can get erroneous results by applying the shape factor for one fragment material to another fragment
made from a different material. Past treatments of shape factor have been inadequate in two other respects:

(1) Average shape factor (i.e., the mean value over all orientations) has been used to characterize the entire
shape factor distribution over random orientations.

(2) To improve upon the average shape factor, it is common practice to use a normal distribution to simulate an
arbitrary orientation.

This report challenges these two assumptions. We show that it is possible to calculate the exact, closed-form expres-
sion for the shape factor probability distribution over all orientations of a right circular cylinder with arbitrary length
to diameter ratio. This reveals that average shape factor does not do a good job of characterizing an arbitrary orien-
tation, and that the probability distribution is neither normal nor symmetric but rather is skewed in favor of larger
shape factors. Since fragment shape factor plays such an important role in penetration and perforation, an improved
treatment of shape factor will have important consequences for predictions of fragment perforation and for the
design of fragment simulating projectiles (FSPs). -

Fragment presented area upon impact with a target plate is a key determinant for penetration, as is fragment
mass. Indeed, apart from velocity, the most important factor for penetration is probably the mass per unit presented
area. This is borne out by an examination of the THOR penetration equations {1, 2]. The THOR velocity retarda-
tion equation is

v, = v, — k,(tA)* mP (sec 6)7v?,
where v, is the residual velocity, v; is the striking velocity, &, is a constant, ¢ is the target plate thickness, A is the
average presented area of the projectile, m; is the striking mass, and 6 is the obliquity angle. The exponents & and

B depend upon the target material. Figure 1 is a plot of these exponents for 20 different target materials, ranging
from very soft to very hard.
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Figure 1. Correlation Between Mass and Presented Area Exponents in THOR Penetration.

It is evident that experimental data support the notion that —f = &, according to the dashed line—which
means that mass and presented area only enter into the THOR penetration equation in the specific combination of
m,/A. Projectile mass is universally recognized as a key parameter for penetration, whereas presented area is per-
haps not appreciated to the same extent. But we see here that they are equally important in the THOR penetration
equation.




Aside from its volume (which is determined by mass and density), the presented area of a projectile is com-
pletely characterized in terms of shape and (except for spheres) orientation. Both of these are contained in the
notion of shape factor, which we will define momentarily. In this report, we restrict ourselves to the shape of right
circular cylinders, for three primary reasons: :

(1) Fragment simulating projectiles are usually cylindrical for ease of firing from a gun barrel (as well as the
ability to control the impact area through spin-stablization).

(2) Fragment penetration models, such as FATEPEN (Fast Air Target Encounter Penetration) [3], often use
cylinders to simulate the fragment shape.

(3) It is simple enough to possess an exact, closed-form expression for the probability density, yet complex
enough to have potential for simulating behind-armor debris fragments.

This report focuses on right circular cylinders with arbitrary L/D ratios, where L is the cylinder length and D is the
diameter. Also, both specific orientation (e.g., yaw angle) as well as random orientation (uniform over the surface of

the unit sphere) are treated.

2. DIMENSIONLESS SHAPE FACTOR

The presented area, A,, is a function of the dimensions of the cylinder, its shape, and its orientation. The
only combination of the mass and material density that has the dimensions of an area is (mass/density)2’3. There-
fore, the presented area is of the form

A, = y(ml p)?>, ¢))
where 7 is a dimensionless shape factor that accounts for both fragment shape and orientation. It is purely a func-

tion of geometry and is independent of both mass and density.
Another definition of fragment shape factor that has been used rather extensively is defined by the equation

A, =sm™>, . @

To contrast this with the dimensionless shape factor, we call this quantity s the conventional shape factor. However,
this is not a good way to define a shape factor. Aside from the fact that the units are the rather cumbersome
cm?gm?3, or in%/grains??, the shape factor so defined is dependent upon the material density. Thus, if we deter-
mine the shape factor for steel fragments, then they cannot be applied to tungsten fragments even if they have the
same shape without first accounting for the difference in densities. The dimensionless shape factor defined by equa-
tion (1) does not have this restriction. It is easy to convert old values to dimensionless values since the relation

between the two is simply

_ p3s if s is in units of cm?/gram?> 3)
¥=140p%3s if s is in units of in*/grains?®

where 1 gram = 15. 432 grains. Since the dimensionless shape factor is purely a function of geometry, it is possible
to calculate it for various standard shapes, as shown in Table 1.




Table 1. Dimensionless Shape Factors for Some Common Shapes

Shape Orientation Shape Factor, y
Sphere Not applicable | (3/2)%3(z/4)"® =~ 1.209
Cube Face-forward 1
Cube Edge-forward | V2 =~1.414
Cube Random? 3/2
Cube Corner-forward | V3 = 1.732

Cylinder (UD=1) | Face-forward (%)"3z0.927

Cylinder (UD=1) | Side-forward (-})‘”3 ~1.175

Cylinder (L/D=1) | Random? (3/2)(/4)"> = 1.384
Artillery Fragment® | Random?® 2.1
Spall Fragment® Random? 2.3

a For random orientation, the rule Ap = (Surface Area)/4 was used (see Appendix A).
b The values for artillery and spall fragments were derived from the measured presented area.

In the remainder of this report, we use the términology “‘shape factor” to mean the dimensionless shape factor, as
defined by equation (1).

3. SHAPE FACTOR OF A CYLINDER
The orientation of the cylinder can be parametrized by the angle 6, as shown in Figure 2.
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Figure 2. Right Circular Cylinder With Orientation Angle.

When viewed from the side (8 = z/2), the projected area is LD. When viewed from the top (6 = 0), the projected
area is #D?/4. For an arbitrary direction, 8, the projected area is the linear combination of these two faces scaled by
the cosine of the projected area surface normal. Thus,

(L
Ay = LD cos(z/2-6)+ 7 D?cos 6l = D’ (B sin g + 7 | cos 9|). @

It is necessary to take the absolute value of the cosine term because cos @ is negative when 7/2 < 6 < . The volume
of the cylinder is given by

mip=7 D’L. . ©)

Substituting these two expressions into equation (1) and solving for ¥, we find that
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Then the shape factor may be written as

where 0 < 8 < 7. Notice that the presented area of the cylinder has the same value at the viewing angle @ as it has at
7 — 8, so that y(8) = y(z — ). Thus, we could restrict the orientation to 0 < 8 < z/2 and just perform averages over
the top hemisphere of the unit sphere. This would allow us to drop the absolute value signs in equation (8). Never-
theless, to avoid confusion, we shall use the form expressed in equation (8) and perform averages over the entire unit
sphere.

This expresses the shape factor as an explicit function of the orientation angle, 8. It is also an implicit func-
tion of the L/D ratio through the coefficients a and b. A plot of ¥ as a function of both orientation angle @ and L/D
ratio is shown in Figure 3.

Figure 3. Shape Factor of a Cylinder as a Functjon of Orientation Angle and L/D Ratio.

From equation (6), we see that y(0) = b and y(x/2) = a. The minimum value of y is one of these, depending upon
the particular L/D ratio:

or, simply, ¥min = min(a, b). €))

[aifL/D<n/4
Tmin =\ b if L/D > 7/4

The maximum value of y can be obtained by setting dy/d@ = 0, and this gives

y =m=(££_m £2+£2U2 (10)
max 4D 4 D)|

The maximum shape factor is realized at the orientation angle

o —tant (%)=t [E2). a1
7= b /4 )

Thus, in general, there are two graphs for the shape factor as a function of orientation angle, depending upon the




L/D ratio of the cylinder. These two cases are exemplified in Figures 4 and 5.
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Figure 5. Shape Factor Dependence Upon Orientation for L/D < /4.

The angle 6, ., in Figure 4 and 8, _, in Figure 5 can be obtained through the ﬁse of equation (8) and we find

a*-b?

6,-,=tan"'( o ) when L/D> n/4 (12)
and
1. 2ab
97,=b=tanl(bT_—a—2-) when L/D < n/4. (13)

From Figures 4 and 5, we also see that when max(a, b) < ¥ < 7pa, the orientation angle is double-valued, and when
min(a, b) < ¥ < max(a, b), the orientation angle is single-valued.

4. SHAPE FACTOR AS A FUNCTION OF ORIENTATION

The minimum shape factor is given by equation (9), and the maximum shape factor is given by equation
(10). The mean shape factor, when averaged over all orientations equally, is given by



2z n
1 1 ,
7=a j 7(0)dQ = 6[ d¢b[y(a) sin 66. (14)

Substituting equation (8) and performing the integration, we find"

oz 1 (2YRLY® L 1
7‘“2*”5—(‘4‘] [E] (5*5) | (13

Calculation shows that 7 is a minimum when L/D = 1, where it takes on the value (312)(z/4)" 3 =~ 1.38395. If we
only know the average shape factor of a fragment, and it exceeds this value, then eq. (15) can be used to find the L/D
ratio of an equivalent disk-shaped cylinder. This solution is shown plotted in Figure 6.

15 T = (312)(z/4)

0.75 —

0.5 —

ot~

0.25

Figure 6. Disk-Shaped Cylinder Derived From the Average Shape Factor.
Here is a simple program that implements this solution of the cubic equation for the L/D ratio:

// asf21d.C: Find the L/D ratio of an RCC with the given average shape factor.

#include <iostream.h>
#include <math.h>

void main( void )

pow( 0.25 * M PI, -1. / 3. );
1.5 / C;

const double C
const double G_BAR_MIN

double 1_dMin, gBar;
while ( cin >> gBar ) {

if ( gBar > G_BAR MIN ) {
double p = sqrt( 2. * C * gBar / 3. );
double q = acos( =-pow( P, -3. ) )i
1_aMin pow( 2. * p *cos( q/ 3. ), =3.);

}
else if ( gBar == G_BAR_MIN ) 1 _dMin = 1.;
else {
cerr << "The minimum average shape factor for an RCC is "

<< G_BAR_MIN << endl;
exit( 1 );
}
cout << 1_dMin << endl; N

}

T This result also follows from the general theorem that the average projected area of a convex solid fs one-fourth the total surface area (see
Appendix A).




The average, minimum, and maximum shape factors are plotted in Figure 7.

4 Disk Shape

0 2 4 6 8 10
L/D
Figure 7. Minimum, Maximum, and Mean Shape Factors as a Function of L/D Ratio.

1t is straightforward to establish the following:
e ¥ isaminimum when L/D = 1.
*  ¥max 1S @ minimum when L/D = V27/4=~1.111.
*  Ymin iS @ maximum when L/D = z/4 = 0.785.

*  ¥max — Ymin (i-€., the range of ¥ over all possible orientations) is a minimum when L/D = n/4 = 0.785.
Its value at the minimum is (V2 — 1)(z/4)""® = 0.449. This quantity is a measure of the deviation from
spherical symmetry, since a sphere has ¥,ax — ¥min = 0.

For completeness, we can also calculate the variance:
72

o*=— [0 -pae= [ @)~ 77 sino o, (16)
4z 5

and we find
2 z? 2 1
2_[%_ 2,022 —p?
o _(3 16)0 +(3 4jab+12b. a7n

5. SHAPE FACTOR DISTRIBUTION OF A RANDOMLY ORIENTED CYLINDER

It is possible to derive a closed-form expression for the shape factor probability distribution function. We
start with the formula for the probability density.
w2

fn= I 8(asing@ +bcosd - y)sinddo, (18)
0
where §(x) is the Dirac delta function, or, setting x = cos 8,
1
f= I 8(g(x)) dx, (19)
0
where
gx)y=aVl—x2+bx~y. (20)

To evaluate this integral, we use the fact that the delta function of a function can be expressed in terms of the roots of




the function [4]:

- 5()5 - x,-)
S =y — 21
(g(x)) 2‘1 VrrE. @1)
where x; (i = 1, -, n) are the n roots of the equation g(x) = 0. The roots of g(x) are found to be
by taJa?+ b2 —y?
= . (22)
a+b?

This can be simplified by introducing the quantities

'=— b= , and y’E—z—, (23)

where ¥ is given by eq. (10). The roots can now be written as

x=by ta\1-y2 (24

Now notice that a’> + b2 = 1 and 0 < ¢’ < 1 so that we can define angles

@ =cos” (b') = cos ™ (B/pm) and B =cos”H(y’) = cos™ (¥ Yimax)- (25)
This allows us to express eq. (24) as
x =cos ¢ cos Btsina sin S = cos(a + B). (26)
So the two roots are ‘
x;=cos{(a—pB) and x; =cos(a+ B), 27
or, in terms of the orientation angle, 8,
Gp=a—-p and 6, =a+p. (28)
Evaluation of the derivative of g(x) is straightforward, and we find '
g =1 D g gy = T e
Thus,
I 1
o= Ojs<g<x»dx - ![ﬁ;’f&l’;;) e (30)
and, using equation (29),
1 . .
fo=| ("7—2—(‘(;‘—;(% 5(x—x1)+ :—%‘%5(1’-«‘2)) @31

In order to evaluate this integral, it is sufficient to know the location of the two roots, x; and x,, or, equivalently, 8,

and 8,. For L/D > z/4, we find that when b <y < a,then0< 8, <6,_, and when a S 7 < ¥, then 6, = 6, -, and
0=y S G2 S /2. Slrmlarly, when L/D < z/4, we find that when a<y<b, then 6,., <6, <x/2 and when
B<Y < Vmax, then 056, <86,_, and 6, =6,_,. Thus, only one root lies in the interval where the orientation
angle is single-valued and both roots lie in the mterval where the orientation angle is double-valued. The evaluation

of the integral is now trivial, and the results are as follows.

. L/D>z/4
I£b<y <a, then f(y) = G —A) (32)
Vmax SiN ﬁ
fa<y <y, then f(y)= SN =F) sin(@ + £) : 33)




.L/D<zn/4
sina + B) , 34

Ifa<y<b, then f(y)= - .
7 T = s

sin(a - B) sin(a + B)
oSBT SIS (35)

b <y < ¥nax» then f(¥) =

Expressing these results in terms of the parameters a and b gives us the following results.
5.1 Probability Density Function

e L/D>xn/4

a?’—b 7]%8)(—72
Lo Vim TP p<y<a  0<6<6,
2ay -

7[%&)( V V%ax - 72

Figure 8 is a plot of this function for a compact cylinder.
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4

Figure 8. Shape Factor Probability Density Function for a Cylinder With L/D > r/4.

Notice the discontinuity at y = (7/4)%3, where the shape factor changes from being single-valued to being double-
valued.

e L/D<r/4

ay + byy2a - 7?
TN Imx T g<y<b 6,<6<7/2

2ay
71%a.x V Yr%ax - 72

Figure 9 shows a plot of these functions for a disk-shaped cylinder.

fn=
by S Vmx 05656,



20 f(»)

L/D=0.5

10 —

| I I l I I | |
09 1 L1 1.2 13 14 15 16 17

14

Figure 9. Shape Factor Probability Density Function for a Cylinder with L/D < #/4.

Notice that the most probable value of the shape factor, (i.e., its mode), is Ymax- regardless of the magnitude of the
L/D ratio.

5.2 Cumulative Distribution Function

« L/D>1r/4

by + ay2e — 72
1 -2V N Vi T b<y<a 0<6<6,

72
max
F(y)= . 3%
2a\y2. — 72

1= EVBe TV <y Sy 0,S0S 72

Vmax

Figure 10 is a plot of the cumulative distribution for a compact cylinder.
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Figure 10. Shape Factor Cumulative Distribution Function for a Cylinder With L/D > /4.
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« Case:L/D<r/4

by — 2 a2 :
XNV TV gy<y<b G,<6<an
Vmax
F(y)= . (39
20720 — 72
1————?“%3’— b<y<tmm 056056,
max

A plot of this cuamulative distribution for a disk-shaped cylinder is shown in Figure 11.

1— F()

0.75 |

0.5 —

0— L/D=0.5

I ! I | ! I [ I [
09 1 11 12 13 14 15 16 17

/4

Figure 11. Shape Factor Cumulative Distribution Function for a Cylinder With L/D < z/4.

5.3 Generating the Random Shape Factor Distribution

The cumulative distribution expressed by equations (38) and (39) can be inverted to give y in terms of the
cumulative probability. Then by selecting the cumulative probability from a uniform random distribution on the unit
interval, we generate a random distribution of shape factors, where the frequency of occurrence follows the probabil-
ity density function—a standard technique for generating random numbers.

« Case:L/D>rn/4

b(1-P)+a1-(1-PR2 0<P<1-2ablyk,
7= . (40
TmaV1 = Gmax(1 = PY2a)2 1 -2ably2 SP<1

« Case:L/D<r/4

bP + a1 - P? 0< P < (B —a®)yty
7= . (41)
Ymax V1 = Mmax(1 = P)2ay2  (b? —a®)p2 S P <1

These equations enable us to define an algorithm for generating random shape factors having the same distribution
as that corresponding to the uniform random orientation of a cylinder. First, define the following quantities:

11




[N

2ab
s Ymx =Va2+b?, Pi=1-——

max

Then the algorithm is:
(1) Generate P ~U(0, 1).
(2) fa=b, (e, L/ID 2 z/4),
(2a)If P < Py, return y = b(1 —-P)+ay1-(1-P).
(2b)Else if P > Py, return ¥ = YmaxV 1 — Gmax (1 — P)/2a)%.
(3) Elseifa< b, (i.e, L/D < 7/4),
(3a)If P < P,,return y = bP + aV1 — P2,
(3b)Else if P > Py, return 7 = ¥npxV 1 — Gmax (1 — PY20)2.

, and

(b*-a%

2
Vinax

P,

This algorithm is more than twice as fast in execution time than the considerably simpler shape factor simulation:

(1) Generate (8, ¢) ~ Surface of the Unit Sphere.‘-‘
(2) Returny = asiné+ bcosé.

Before moving on, we summarize some properties of the shape factor distribution for a randomly oriented cylinder

in Table 2.
Table 2. Shape Factor Parameters for a Randomly Oriented Cylinder
Parameter Expression Values when L/ID = 1
Length | L L
Diameter | D L
-2/3
Parametera | a=[Z %) L a=1.17474
4D D
parameterb | b={ZL)] % b =0.922635
“\4D) 4 e
Minimum | ¥m;x = min(a,b) Ymin = 0. 922635
Maximum | Ymax = Va2 + b2 Yax = 1. 49374
Mean 7=%a+%b 7 =1.38395
2 2 1
Variance | o? =(§—%Ja2+(§ —%Jab+ Tib2 o? =0.0109974
Mode | 7 = Yma ¥ =1.49374
T Godday it Z<L Bz
7\’}n_ax Vmax 2°D 4
3a+b L
‘ if (w/g +2) z < =
Median | 5=, 2 4 D 7=1.41626
—oddaf if ~Z<E 2
7ma.x max _\/‘5 4 D 4
V3a+b s L 17
2 D 34

i See Saucier [5] for an algorithm to generate angle pairs (6, ¢) that lie on the surface of the unit sphcré.
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6. SIMULATION OF BEHIND-ARMOR DEBRIS FRAGMENTS

As the L/D ratio decreases, and the fragment becomes more disk-like, the probability density function f(y)
becomes nearly constant everywhere except very close t0 .., Where it becomes highly peaked. Consequently, the
cumulative distribution function F(y) becomes almost a straight line over nearly its entire domain. For example,
Figure 12 shows a plot of the F (y) for an L/D of 0.1.

I F@)
0.75 L/D=0.1
0.5 —
0.25 -
0
1 I [ | | | | I |
05 1 15 2 25 3 35 4 45

Figure 12. Shape Factor Cumulative Distribution Function for a Cylinder With Small L/D.

Thus, if fragments can be simulated with small~L/D-ratio, disk-shaped cylinders, then we should expect a relatively
flat, or uniform, shape factor distribution over orientation angle. While this pertains to a single fragment, what about
a distribution of fragments? Since there is no obvious reason why the fragments would be expected to have all the
same L/D ratio, let us assume that they vary over some finite range. How will this affect the shape factor distribu-
tion? For example, Figure 13 shows four cylinders with different L/D ratios. As a point of reference, a dime has an
L/D of 0.1.

LID=1 L/D=0.5

L/ID=0.1 L/D =0.05

Figure 13. Four Cylinders of the Same Mass but Different L/D Ratios.
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Let us assume that the L/D ratio is equally likely to be anywhere from 0.05 to 0.5, and that each fragment is oriented
uniformly over the unit sphere. To determine the resultant shape factor distribution, we perform a Monte Carlo sim-

ulation. Figure 14 shows a typical result.

Midpt Freq
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0.978 23 dkkdhkhkhkkk kI d A A AN AL
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3.369 5 *kkkk
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3.803 3 kk*

4.021 1 *

4,238 1 *

4.455 2 *%*

4.672 0

4.890 2 *%

5.107 0

5.324 1 *

Figure 14. Shape Factor Simulation from Randomly Oriented Cylinders With Uniformly Distributed L/D Ratios.

The distribution appears to be lognormal. In any case, it is skewed to larger shape factors, and is far from uniform. .
In summary: i
A fragment in the shape of a disk-like cylinder with a small but fixed L/D ratio leads to a uniform distribu-
tion of shape factors.
« A collection of fragments in the shape of disk-like cylinders with small but varying L/D ratios leads to a
distribution of shape factors that is skewed to larger values and appears to be lognormal.

The next step is to compare these results to experimental data.

6.1 Experimental Design to Collect Behind-Armor Debris

Behind-armor debris fragments were collected in Cellotex when a 30-mm armor piercing discarding sabot
(APDS) round was shot at a 1-inch—thick target of rolled homogeneous armor (RHA). The debris fragments were
subsequently collected and weighed. Then each fragment was placed in a device that measures the presented area
from 16 different orientation angles.” Knowing the mass of the fragment and its presented area allows us to derive a

value of the shape factor by making use of equation (1).

6.2 Analysis of Shape Factor Data _
Figure 15 shows the shape factor distribution for one of the spall fragments, as measured from 16 viewing
angles.

T The firings and fragment collection were performed by Robert F. Kinsler at the U.S. Army Research-Laboratory Experimental facility. The
measurements of the fragment presented area from 16 different viewpoints were performed at the U.S. Army Aberdeen Test Center.
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Figure 15. Shape Factor of a Spall Fragment from 16 Viewing Directions.

Although the frequency distribution shows scatter, the shape factor is relatively uniform over orientation angle.
Since 16 viewpoints are not very many, we should expect a certain amount of variation. For example, Figure 16
shows the shape factor simulation results from viewing a randomly oriented cylinder with an L/D = 0. 1.

3
2
N
1
0
I l T T
1 2 3 4

Figure 16. Simulation of Shape Factor Distribution from 16 Viewing Directions.

In this particular shot, 150 spall fragments were recovered. They ranged in mass from 0.02 grains to several hundred
grains (where the larger masses may very well be broken pieces of the penetrator). The fragment masses appear to
be lognormally distributed.” Now we might expect there to be a correlation between the mass of a fragment and its
shape factor distribution. For example, one might expect a smaller fragment to be more compact, like a sphere, and
a larger fragment to be more irregular in shape. The first question to address, then, is whether there is a systematic
trend between the mass of the fragment and its shape. To test this, we compute the linear correlation coefficient.
The correlation coefficient between two variables x and y is defined by

;= SV (x,y) , “@2)
0,0y

t The behind-armor debris mass distribution is commonly fitted with a Weibull distribution, where it goes by the name of Rosin-Rammler
distribution. We have found, however, that a lognormal gives a better fit to this data.
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X xi - D - ) (43)

i=1

1
cov(x,y)= 1

is the sample covariance of the n (x, y) data pairs and

M:

L — 2? (44)
n—l,- 1

1l

%

I

is the sample variance. The value for r always lies in the range [-1, 1], with a value of 0 indicating the variables are
uncorrelated. For a nonzero value close to zero, we use the fact that the test statistic

Vn -2
AL (45)
V1 -r2
is distributed according to Student’s distribution and use it to test the null hypothesis that the actual correlation coef-
ficient is zero,

Hy:p=0, (46)

where p is the actual correlation coefficient. The computed correlation coefficient between the mass of the fragment
and the average shape factor is found to be r = 0. 130. Our test statistic is # =—1.60. From a table of Student’s
distribution, we find that this is smaller (in absolute value) than 1.96, the critical value for a two-sided test at the 0.05
level of significance. This means we cannot reject the hypothesis that these two variables are uncorrelated. Another
indicator of compactness, or lack thereof, is the difference between the maximum and minimum shape factors. The
correlation coefficient between this difference and mass is found to be r = —0. 076. The test statistic is z = —0.93.
Once again, since this is smaller than 1.96 in absolute value, we cannot reject the hypothesis that these two variables
are uncorrelated. These tests show that there does not appear to be any statistical correlation between shape factor
and mass. Therefore, we do not introduce any systematic bias by pooling all the shape factors regardless of mass.
This gives us a total of 2,400 shape factors (i.c., 16 views X 150 masses) from which to determine the shape factor

distribution. This is shown plotted as a histogram in Figure 17.

Probability
Density

10 12 14
Shape Factor, y

Figure 17. Empirical Shape Factor Probability Distribution.

The empirical distribution appears to be lognormal—and resembles very much the distribution obtained by varying
the L/D ratio of disk-like cylinders (cf. Figure 13).




6.3 Monte Carlo Simulation of Shape Factor

Thus, it appears that randomly oriented, disk-like cylinders have the potential for simulating real behind-
armor debris fragments. This is about as far as we can go without additional experiments. The experiments cited in

this report do not attempt to classify fragments as either spall, originating from the RHA target, or broken pieces of

the penetrator. The penetrator in this case was made of tungsten with a material density of 17.6 gm/cm®. If ¥,

denotes the fragment shape factor computed assuming that the material was steel, and the fragment was actually
composed of tungsten, then the correct shape factor is

Tw = s (17.6/7.8)7% = 1.72 5. 47)

So this can have a significant effect upon the shape factor distribution. Indeed, at face value, we cannot obtain an
L/D ratio for all of the empirical data, due to the fact that the smallest average shape factor for a cylinder is 1.3895.
The smallest average shape factor from the empirical data is 0.8424. Notice, however, that if this is actually a tung-
sten fragment, then the average shape factor is 1.72 x 0. 8424 = 1. 4489, which does lie within the range of a cylin-
drical shape.
_ A procedure for using disk-like cylinders to simulate behind-armor debris fragments can be formulated as

follows:

+  Collect behind-armor debris fragments and identify the material density.

»  Use equation (15) to compute the L/D ratio from the average shape factor.

+ Identify a probability density function that captures the L/D distribution. Denote this distribution by
F(L/D); the simulation leading to Figure 13 assumed that this was the Uniform distribution.

Once the F(L/D) distribution is known, an algorithm for a Monte Carlo simulation is as follows:
(1) Generate L/D ~ F(L/D). ’

(2) Generate (6, ¢) ~ Surface of the Unit Sphere.
(3) Return y = asiné + b cos 8, where a and b are given by equation (7).

Once the mass m, density p, and L/D ratio of the fragment are known, then the actual dimensions of the fragment

can be computed:
mip 113 L .

7. CONCLUSIONS

A dimensionless shape factor was defined and applied to a randomly oriented right circular cylinder. This
analysis established the following results.

o The L/D ratio of a disk-shaped cylinder can be obtained from the average shape factor (see p. 6).
»  An explicit probability density function can be obtained for a randomly oriented cylinder.
» Two algorithms can be used for simulating randomly oriented cylinders:
O A fast method, derived from the inverse transformation technique.
O An explicit simulation of the oriented cylinder.
+  Shape factors for disk-shaped cylinders show potential for simulating behind-armor debris fragments.

It should also be noted that the average shape factor should not be used in place of the shape factor distribu-
tion. For example, consider a 1-gm steel cylinder with an L/D = 0. 1 striking a 1/32—inch mild steel plate at a speed
of 360 m/s. The THOR penetration equations indicate that the projectile will perforate the plate only if ¥ <2.3.
Since the average shape factor for this L/D ratio is 2.6, using 7 to represent the projectile, will lead to the conclu-
sion that there is no perforation. Using the shape factor distribution, however, shows that there is indeed perforation
in 42% of the impact encounters due to the effect of random orientation (cf. Figure 12).

The results derived in this report should be used for designing fragment-simulating projectiles. And since
the FATEPEN code explicitly models penetrators as right circular cylinders, fully accounting for both orientation
and L/D ratio, these results should also be useful when using that model for simulating fragment penetration.
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APPENDIX A:
MEAN PRESENTED AREA OF A CONVEX SOLID

Let n be the outward normal on the surface of the solid and let n’ be a unit vector along an arbitrary direc-
tion. The presented area of the convex solid in the direction n’ is given by the integral

4= [ nwas, (A1)
nn' >0
where dS is an element of surface area. The mean presented area, averaged over all directions 1, is given by
A 1 ’ ’
A= fa2 [ nowas, (A-2)

nn’ >0
where the first integral is over all solid angles of a unit sphere. Interchanging the order of integration, we have
- 1
Ay=fas— [ n-wae. (A-3)
4z
no’' >0

In the last integral, n remains fixed while n’ varies over all solid angles such that n - n’ > 0. By changing coordinates
so that m is along the polar axis, n - n’ = cos 4, and this integral is easily evaluated:

27 n/2
| nowagr=[ap [ cososinedo=1x. (A-4)
nn’ >0 0 0
Substituting this result into equation (A-3) gives
- 1
Ay=7 | as. )

The integral is the total surface area of the solid, so we have the general result:

The mean presented area of a convex solid is one-fourth of the total surface area.

It is a well-known fact that a sphere is the shape that minimizes surface area. With the aid of the above
result, we can conclude that the minimum mean presented area of any convex solid is

_ 1
A, 2.2 (surface area of a sphere ) = xr?, (A-6)

where r is the sphere radius. Substituting this into the equation A p =7(m/ p)?3, we find that the average shape fac-
tor for any convex solid obeys the inequality

7 2 (3/2)2(z/4)"3 = 1.20899.

Notice, in particular, that a right circular cylinder obeys this inequality since it has a minimum average shape factor
of (3/2)(z/4)"" ~ 1.38395.

T This theorem has been attributed to Cauchy. It was first brought to the author’s attention by Dr. Robert Shnidman who also outlined this
particular derivation.
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APPENDIX B:
SHAPE FACTOR OF A SPIN-STABLIZED FRAGMENT SIMULATOR

The dimensions of the chisel-nose fragment simulator' are shown in Figure B-1.

T
o3
Di3
D/3
~~ D/15
Side View
N ————
Top View

Figure B-1. Dimensions of Fragment Simulator.

Shape Factor
The fragment is spin-stablized so that the chisel nose is forward. The dimensionless shape factor, 7, is
defined by

A, = y(mlp)?, (B-D
where
A, isfragment presented area (cm?),
m  is fragment mass (gm), and
p  is fragment density (gm/cm’).
Volume

The fragment volume, m/p, can be calculated as follows:

Total Volume = Volume of Cylinder with Diameter D and Height 2D/5 - Volume of Chiseled Edges. (B-2)

The volume of the chiseled edges can be calculated using the coordinate system shown in Figure B-2.

1 Fisher, Todd J. and Robert Shnidman. “An Empirical Model for Predicting Electrical Cable Failures in Modern Combat Vehicles,” ARL-
MR-28, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, January 1993.
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x“+(y 6) 2
v2D/3

D/2

Figure B-2. Coordinate System for Calculating Volume of Chiseled Edges.

Carrying out the integrations, we find

m_|z 192 +sin"l(2w/_2-/3) D3
p |10 162 12 ;

Substituting this into equation (B-1), with A, = zD?*4, gives
2/3
1 in~!
_ nii_zr__ 02 sin (2@3)] - 197448,

310 162 T T 12

Shape Factor of a Spin-Stablized Right Circular Cylinder
The shape factor of a (flat nose) right circular cylinder that impacts face-on is

(&6

Thus, the proper L/D ratio to effect a given shape factor 7, is
L/D =r/4y ™2,
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